我们提出了一种名为ACLNET的新型深度学习模型,用于从地面图像中分割云。ACLNET同时使用深神经网络和机器学习(ML)算法来提取互补功能。具体而言,它使用有效网络-B0作为骨干,“``trous tos blacial pyramid boming''(ASPP)在多个接受场上学习,并从图像中提取细节细节。ACLNET还使用K-均值聚类来更精确地提取云边界。ACLNET对白天和夜间图像都有效。它提供的错误率较低,较高的召回率和更高的F1得分比Art最先进的云分割模型。ACLNET的源代码可在此处获得:https://github.com/ckmvigil/aclnet。
translated by 谷歌翻译
随着半导体晶片的整合密度和设计的复杂性的增加,它们中缺陷的幅度和复杂性也在上升。由于对晶圆缺陷的手动检查是昂贵的,因此高度需要基于自动的人工智能(AI)计算机视觉方法。先前关于缺陷分析的作品具有多个局限性,例如准确性低以及对分类和分割的单独模型的需求。为了分析混合型缺陷,一些以前的作品需要为每种缺陷类型分别训练一个模型,这是不可估计的。在本文中,我们介绍了基于编码器架构的新型网络WafersegClassnet(WSCN)。 WSCN执行单个和混合型晶圆缺陷的同时分类和分割。 WSCN使用“共享编码器”进行分类和细分,允许训练WSCN端到端。我们使用N-PAIR对比度损失首先预处理编码器,然后使用BCE-DICE损失进行分割,并进行分类的分类横向损失。使用N-PAIR对比度损失有助于更好地嵌入晶圆图的潜在维度。 WSCN的模型大小仅为0.51MB,仅执行0.2m的拖鞋。因此,它比其他最先进的型号轻得多。同样,它仅需要150个时期才能收敛,而先前的工作需要4,000个时代。我们在具有38,015张图像的混合WM38数据集上评估了我们的模型。 WSCN的平均分类精度为98.2%,骰子系数为0.9999。我们是第一个在混合WM38数据集上显示分割结果的人。可以从https://github.com/ckmvigil/wafersegclassnet获得源代码。
translated by 谷歌翻译
In this paper, we extend previous self-supervised approaches for language identification by experimenting with Conformer based architecture in a multilingual pre-training paradigm. We find that pre-trained speech models optimally encode language discriminatory information in lower layers. Further, we demonstrate that the embeddings obtained from these layers are significantly robust to classify unseen languages and different acoustic environments without additional training. After fine-tuning a pre-trained Conformer model on the VoxLingua107 dataset, we achieve results similar to current state-of-the-art systems for language identification. More, our model accomplishes this with 5x less parameters. We open-source the model through the NVIDIA NeMo toolkit.
translated by 谷歌翻译
对于大多数自然语言处理任务,主要的实践是使用较小的下游数据集对大型预验证变压器模型(例如BERT)。尽管这种方法取得了成功,但尚不清楚这些收益在多大程度上归因于用于预处理而不是训练预处理的目标本身所采用的大量背景语料库。本文介绍了一项大规模的自我预测研究,其中相同的(下游)训练数据都用于预训练和填充。在解决Electra和Roberta型号以及10个不同下游数据集的实验中,我们观察到在BookWiki语料库上进行自我预测的竞争对手标准预告片(尽管使用了$ 10 \ times $ $ -500 \ times $ -500 \ times $少的数据),在7美元上以7美元的价格优于$ 7 $和$ 5 $数据集。令人惊讶的是,这些特定于任务的预预性模型通常在其他任务(包括胶水基准)上表现良好。我们的结果表明,在许多情况下,可归因于预处理的绩效收益主要是由预处理目标本身驱动的,并不总是归因于大规模数据集的合并。考虑到网络规模预处理数据中对知识产权和进攻内容的担忧,这些发现尤其重要。
translated by 谷歌翻译
本文描述了对象目标导航任务的框架,该任务要求机器人从随机的启动位置查找并移至目标对象类的最接近实例。该框架使用机器人轨迹的历史记录来学习空间关系图(SRG)和图形卷积网络(GCN)基于基于不同语义标记区域的可能性以及这些区域不同对象类别的发生的可能性。为了在评估过程中定位目标对象实例,机器人使用贝叶斯推理和SRG估计可见区域,并使用学习的GCN嵌入来对可见区域进行排名,并选择接下来的区域。
translated by 谷歌翻译
对象目标导航要求机器人在以前看不见的环境中找到并导航到目标对象类的实例。我们的框架会随着时间的推移逐步构建环境的语义图,然后根据语义映射重复选择一个长期目标(“ where to Go”)以找到目标对象实例。长期目标选择被称为基于视觉的深度强化学习问题。具体而言,对编码器网络进行了训练,可以从语义图中提取高级功能并选择长期目标。此外,我们还将数据增强和Q功能正则化合并,以使长期目标选择更有效。我们在AI栖息地3D模拟环境中使用照片现实的Gibson基准数据集进行了实验结果,以证明与最先进的数据驱动基线相比,标准措施的性能改善。
translated by 谷歌翻译
我们争辩说,当模型学习\ texit {good}表示时,我们应该有一个有价值的视角是,应该由人类类似地观察到模型的类似表示的输入。我们使用\ textit {表示反转}来生成映射到相同模型表示的多个输入,然后通过人类调查量化这些输入的感知相似性。我们的方法产生了模型与人类感知对齐的程度的衡量标准。使用这种对准度量,我们评估了用各种学习范例(例如〜监督和自我监督学习)和不同培训损失(标准和强大培训)培训的模型。我们的研究结果表明,具有人类感知的表现的对齐提供了对模型的品质的有用的额外见解。例如,我们发现与人类感知的对齐可以用作模型对不同模型对输出冲突的输入的模型预测的信任的量度。我们还发现模型的各种属性,如其架构,培训范式,培训损失和数据增强在与人类感知一致的学习陈述中起着重要作用。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
Deep learning techniques with neural networks have been used effectively in computational fluid dynamics (CFD) to obtain solutions to nonlinear differential equations. This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function. This method eliminates the process of changing the non-linear differential equation to an initial value problem. Also, it tackles the convergence issue arising in the conventional series solution. It is seen that this method produces results that are at par with the numerical and conventional methods. The solution is extended to the negative axis to show that PINNs capture the singularity of the function at $\eta=-5.69$
translated by 谷歌翻译